

Electric mobility and transformation

- effects on value creation and employment
- sustainable location strategy in transformation

IndustriALL Global Union

Expert Group on the Transformation of the Automotive Industry

19./20.6.2019, Geneva

Dr. Martin Schwarz-Kocher, IMU Institut Stuttgart

IMU Institut GmbH Büro Stuttgart Hasenbergstraße 49 70176 Stuttgart Telefon (0711) 23 70 5-0 Telefax (0711) 23 70 5-11 E-Mail: imu-stuttgart@imu-institut.de www.imu-institut.de

Market penetration scenarios for electro mobility

Effects on value added and employment using the example of Baden-Württemberg

Regional economic policy in the transformation process to electro mobility

Research project: Structural study on BW^e mobile 2019

DLR Institute on Vehicle Concepts

Electrification, trend development, scenario analysis, VECTOR21

IMU Institut GmbH

Manufacturing 4.0, sector structure, value creation, employment

BridgingIT GmbH

- Digitalization, high-level automation, autonomous driving
- Coordinator: Deutsches Zentrum f
 ür Luft- und Raumfahrt e.V.
- Customer: e-mobil BW GmbH
- Term: Okt. 2017 Okt. 2018
- Objective: Classification of structural change for Baden-Württemberg as an automotive location

DLR Institut für Fahrzeugkonzepte

IMU Institut GmbH

Model region Baden-Württemberg

Powertrain concepts on electric mobility

Power requirement for different drive concepts per 100 km

OEM-Forecast

					1					
	2	018	20)19	20	020	2	021	2	022
	Q8 Concept	e-tron Quattro	e-tron Sportback	A4 Facelift	e-tron C-SUV		e-tron GT	Q1	e-tron SUV	
udi										
	A7	A6	Q6	Q4						
	Q3 II	RS7	Q4							
	i8 Coupé (2018)	i8 Roadster (2018)	1er		i3X		i4	13	e in the second	itx
w	2er Active Tourer FL	X7					iNext			
	×5									
	GLC FCELL	CLS	AMG Project ONE	Concept EQ	EQA-SUV	Ecoluxe	CLC	EQE	EQGLE	EQGLS
edes-Benz/	A-Klasse	GLE	Concept EQA	EQC	EQS	Smart Facelift	EQB			
art										
	AMG GT4	AMG CLS 53	GLS	GLB	GLG	Smart Forfour Facelift				

7

Calculation of Scenarios by DLR

General Parameters

			2010	2015	2020	2030	Source
	Oil price	€/bbl	59.5	67.2	74.9	90.3	[5]
	Gasoline price	€/1	1.41	1.46	1.52	1.63	Own calculation
Energy price development (for both scenarios)	Diesel price	€/1	1.24	1.30	1.37	1.50	Own calculation
	CNG price	€/kg	0.94	1.11	2.06	2.17	[6]
	Electricity price	€/kWh	0.25	0.26	0.27	0.26	[7]
	H ₂ price	€/kg	19.8	11.8	7.9	6.0	[8]
Availability of	Fuel stations	%	100	100	100	100	Model assumption
	CNG stations	%	7	8	10	17	Model assumption
scenarios)	H ₂ stations	%	0	0	3	20	Model assumption

Parameters on scenarios

			2010	2015	2020	2030	Source
	-						
	Charging stations	%	0	5	31	58	Model assumption
Specifics for business-as-	Maximum of BEV production	pcs./a	0) 12,000 115,000 550,000 Model		Model assumption	
usual scenario	CO ₂ limit	g/km	_	130	95	67	[9]
	Charging stations	%	0	5	35	75	Model assumption
Specifics for progressive	Maximum of BEV production	pcs./a	/a 0 12,000 120,000 2,200,00		2,200,000	Model assumption	
scenario	CO ₂ limit	g/km	_	130	95	50	Model assumption

10

Business as usual scenario

Progressive scenario

12

In progressive scenario BEV 2030 more favorable than ICE

13

Example of (net) changes in costs of various mid-range vehicle types by 2030

CO₂-Emissionen of PC fleet <u>Europe</u>, EU28, Tank-to-Wheel 2050 (PC only, EU28)

The EU 2050 CO2 targets can be achieved with the progressive scenario only, given that ...

- Strong CO2 reductions on ICE
- HP per PC remains unchanged
- Mileage per PC remains unchanged
- Other transport sector show an equal positive development.

That is highly unlikely!

Electric mobility alone will not be able to stop climate change. But without electro mobility the climate catastrophe will not be preventable!

The CO2 targets from the Paris Climate Agreement can only be achieved through a major change in the mobility culture. I.e. expansion of public transport and reduction of private transport!

- Strong expansion of e-mobility (progressive scenario).
- Car-Sharing und neue mobility services.
- Massive expansion of railways (passengers and cargo)!
- Expansion of public transport in cities.
- New public transport concepts for rural areas.

Market penetration scenarios for electro mobility

Effects on value added and employment using the example of Baden-Württemberg

Regional economic policy in the transformation process to electro mobility

Effects on value creation

Each engine type has different:

- components
- value creation
- labor impact

Engine types	ICE	HEV	PHEV	REEV	BEV	FCEV			
Components	Changes to the systems by 2030								
Internal combustion engine	modified	modified	modified	modified	n.a.	n.a.			
Starter and generator	modified	modified	modified	modified	n.a.	n.a.			
Exhaust/ventilation system	modified	modified	modified	modified	n.a.	modified			
Fuel supply	modified	modified	modified	modified	n.a.	modified			
Gears	modified	modified	modified	modified/ n.a.	modified/ n.a.	modified/ n.a.			
Electric drive	n.a.	new	new	new	new	new			
Battery system	n.a.	new	new	new	new	new			
Power electronics	n.a.	new	new	new	new	new			
Internal charging system	n.a.	n.a.	new	new	new	n.a.			
Fuel cell system	n.a.	n.a.	n.a.	n.a.	n.a.	new			

Overview of new, modified and no longer needed components, broken down by engine type

Findings from the ELAB 2 study show the labor impact for each type of power train (Petril ICE = 100%):

- Diesel 127 %
- Hybrid 121 %
- BEV 26 %

Gesamt- Netto -Personal-	Analys. Ant	eil der	Beschäftigte bei			
Herstellung von	lerstellung von jeweils betr		250.000 Stück/a	1.000.000 Stück/a		
ICE Benzin (4 Zylinder, 100 kW)	60%	~ 1.140	~ 3.990		
ICE Diesel (4 Zylinder, 100 kW)		60%	~ 1.150	~ 4.030		
ICE-Peripherie Benzin (4 Zylir	nder, 100 kW)	25%	~ 630	~ 2.100		
ICE-Peripherie Diesel (4 Zylin	der, 100 kW)	25%	~ 1.030	~ 3.380		
Automatikgetriebe (Doppelki	upplung, 6 Gänge)	75%	~ 940	~ 3.360		
Hybridgetriebe (Doppelkupplu schließlich Elektrischer Maschine (ing, 6 Gänge) ein- synchron, 75 kW)	75%	~ 1.230	~ 4.420		
Elektrische Maschine (synchr Getriebe, ohne Magnete (nicht in	on, 100 kW) einschl. betrachteter WSK)	85%	~ 530	~ 1.840		
Traktionsbatterie (60 kWh) ohne Zellen (nicht in betrachteter WSK)			~ 350	~ 1.320		
Leistungselektronik			~ 120	~ 420		
Fahrzeugeinbau bei			~ 270 ~ 430 ~ 210	~ 900 ~ 1.450 ~ 680		

Abbildung 4: Personalbedarfe für die Komponentenherstellung bei analysiertem Antei der Beschäftigung in der jeweils betrachteten WSK sowie für den Fahrzeugeinbau im Jahr 2016 (netto)

19

Labor impact of fade-out of ICE related components

C Authors' own presentation

26.3.2019

© IMU Institut GmbH

Labor impact of face-in of new components

Overall effect of new components until 2030

Assumption that 8% of all new components will be manufactured in Baden-Württemberg

- BAU scenario + 8.000 employees
- progressives scenario
 + 15.000 employees

© IMU Institut

Procedure used to identify the number of employees potentially affected by new components in 2030

Effects for the entire sector

	Workforce in 2016	Overall effects in 2030 (Business as usual)		Overall effects in 2030 (Progressive)	
Total for automobile cluster as a whole (including vehicle trade)	468,500	8,900	1.9 %	-30.800	-6.6 %
Impacts on employment of electric mobility in vehicle trade					

No threat to the industry as a whole with a successful transformation:

The transformation will only be successful if:

- the **innovation leadeership** is maintained
- A share of 8% of all new components will indeed be built in the region of Baden-Württemberg

Most concerned employees

However, each value-added segment is affected quite differently.

Two groups of employees are particularly affected :

I. Huge challenges for R&D:

- Employee levels will stay more or less the same but ...
- 10-15 % of the 70,000 R&D employees have to be retrained for new assignments/technologies!

Betroffene Beschäftigte

II. Powertrain related manufacturing plants will be hit hard!

	Powertrain workforce in 2016	Powertrain workforce in 2030 (Business as usual)		Powertrain workforce in 2030 (Progressive)	
Fade-out of powertrain-dependent manufacture	69,600	-7,100	-10.2 %	-32,300	-46.4 %
Productivity and low-cost-country strategy		-11,600		-6,800	
Development without fade-in		-18,700	-26.9%	-39,100	-56.2 %
Fade-in potentials in manufacturing		5,000		7,900	
Overall balance of impacts	69,600	-13,700	-19.7 %	-31,200	-44.8%

Impacts of electric mobility on employment in powertrain-dependent production plants

Authors' own presentation

∠⊤

Baden-Württemberg as a cluster of industrial innovations

Baden-Württemberg's economic strength lies in its highly developed industrial innovation cluster, which is based on the close coupling of production knowledge and top performance in R&D.

The state's industrial innovation cluster is based on the development of a new technology for the production of innovative products. The transformation to electro mobility offers opportunities and challenges for this industrial innovation cluster.

Opportunities:

• The reinvention of the passenger car requires precisely this innovation network!

Challenges:

- There are new requirements for R&D excellence (AI, e-mobility, digitization, etc.)
- In order to maintain the innovation cluster, production plants for all e-components in Baden-Württemberg are required.

An important success factor for the transformation of the industrial innovation cluster of the industry lies in the transformation of the <u>manufacturing plants</u>!

Structural study on BW^e mobile 2019 Conclusions

If it is possible to prepare the specific industrial innovation cluster for the new tasks, the transformation to electromobility will strengthen the economic region of Baden-Württemberg.

This requires joint efforts on the part of industry, politics and employees. The following is required:

- A qualification offensive also in the field of R&D.
- Maintaining and expanding the link between R&D and manufacturing plants.
- The expansion of added value of all e-components in the region.
- Concrete transformation plans for the powertrain plants in Baden-Württemberg.
- Labor market policy support for the structural change.

Market penetration scenarios for electro mobility

Effects on value added and employment using the example of Baden-Württemberg

Regional economic policy in the transformation process to electro mobility

Employment security in the e-mobility transformation process

- I. A good corporate strategy is an important prerequisite for maintaining employment in the e-mobility transformation process!
- II. Not every good corporate strategy is a good location strategy!
 - > If all internal combustion engine sites are used until the end and then closed down.
 - When the new competencies are acquired through international company acquisitions and are not used at the existing locations.
- III. Safeguarding employment in Germany always also means sustainable development of the existing (manufacturing) locations!
- IV. Therefore, the corporate strategy must be supplemented by intelligent location strategies!
 - This will not be possible without the active involvement of the works councils (and committed plant managers).

Example

Automotive supplier:

- 80,000 employees worldwide, approx.
 12,000 in Germany
- 20 sites in Germany
- More than 80% of the sites in Germany depend on combustion engines

Company strategy:

- Transformation of portfolio through the acquisition of competences in the area of e-mobility
- Acquisition of an e-motor manufacturer with 2,000 employees and of an electronics manufacturer

IG Metall strategy:

- The existing collective agreement on employment security states that all sites have to adapted to change
- At the supervisory board the demand was tabled to prepare also the German sites for the new era of e-mobility
- The management was instructed to develop future-oriented concepts or all German sites together with the employee reps (IMU-Institute as advisor)

How to elaborate the future concepts <automotive supplier>

Allocation of powertrain types (ICE, Hybrid, Electric, Fuel Cell)

Workshops on fostering potential

Working Group 'technology'

Interviews Business Unit Experts

Interviews external experts

I. Impact Analy	/sis 2030
Product portfolio	DLR-scenarios

II.Profile of expertise of siteSelf-assessmentExternal assess.

IV. Derivation of concrete actions

Product volumes by 2030

Volume by Product	Fest.2 V 2017	Szenario " GP " 2030	Differenz 2022 / 2030 "GP"
Air Intake Modules & Components & Actuators	1,29	0,80	-0,67
Air Cleaner Modules & Components	0,57	0,33	-0,26
Cover / Crankcase Ventilation Modules (40%)	0,13	0,04	-0,03
Oil Filters	0,27	0,07	-0,03
Industrial Filtration	0,03	0,03	+0,01
Others (95%) - Transfer STM, ext./int. Customers	0,35	14,75	-2,18
Subtotal sheet metal	2,64	16,03	-3,15
Cover / Crankcase Ventilation Modules (60%)	0,19	0,07	-0,04
Tank Ventilation Modules	0,11	0,01	+0,00
Pump Systems	0,52	0.09	-0,03
Subtotal plastic	0,82	0,17	-0,07

Newsletter IMU Institut

Anmeldung:

